

ISHMII

The International Society for Structural Health Monitoring of Intelligent Infrastructure

Founded and formed in 2003 on the vision of a **few distinguished members** of civil engineering community (Founding President: Prof. Mufti, Univ. of Manitoba,

Following President: Prof. Ansari, Univ. of IL at Chicago)

Dedicated for Advancement of Structural Health Monitoring Technologies and related Asset Management Methodologies for Engineering Structures

Proposed objectives to be discussed

Promoting SHM systems alongside NDT/NED methodologies to avoid damage and consequent economical & societal problems

- Mutual presentation of current activities in SHM; structures of interest
- Presentation of the ISHMII's objectives and society structure
- Discussion of possible touch points for a future cooperation between Abendi and ISHMII; networking; key tasks
- Building bridges between the Latin American academia (experts and PhD students) & SHM industry supported by ISHMII; benefits from ISHMII publications (Journal, e-magazine)

ITORING OF INTELLIGENT INFRASTRUCT

Objectives of ISHMII (see also flyer or website)

- Promoting innovative structural monitoring solutions as an integrated part of designed and exisiting structures
- Providing a platform for engaged and globally interacting members who foster collaboration with national or regional associations
- Respond to technical and societal challenges to manage risks (historical structures, structures in dense urban regions and for large public gatherings)
- Knowledge sharing and experience exchange among international experts and communities
- Multi-disciplinary research for risk management and estimation of the structure's remaining life
- Foster international standardization
- Accelerate the acceptance of SHM as a major performance measurement and evaluation tool by owners and authorities

Management Team

President: Dr. Wolfgang Habel, BAM Berlin/Germany

Prof. Zhishen Wu, Ibaraki Univ. Tokio & Southeast Univ. Nanjing, China

→ Next President (President-elect): 2017 - 2019

Vice-President for Education:

Prof. Branko Glisic, Princeton Univ. USA

Vice-President for Membership Development:

Prof. George Akhras, Royal Military College of Canada in Kingston/Canada

February 19, 2016

Constitution and By-Laws International Society for Structural Health Monitoring of Intelligent Infrastructures (ISHMII)

Amended and Adopted February 2016

Index of Articles

Article 1 - Name, Status, Contact Information and Official Language of the Society, Pages 1-2

Article 2 - Aim and Objectives, Pages 2-3

Article 3 - Activities, Page 3

Article 4 - Membership, Pages 4-6

Article 5 - Organization, Page 6

Article 6 - Council, Pages 7-9
Article 7 - Executive Committee, Pages 9-11

Article 8 - Vice-Presidents, Pages 11-12

Article 9 - President-Elect and President, Pages 12-14

Article 10 - Task Forces, Page 14

Article 11 - Voting and Nomination Rules, Pages 15-16

Article 12 - Biennial Official Conference and Biennial Official Workshop, Pages 16-18

Article 14 - Publications, Pages 18-19

Article 15 - Finance, Page 19

Article 16 - Rights of Members, Pages 19-20

Members of ISHMII

- **Practitioners**
- Scientists
- Students and students groups
- Engineers working in the field and academia
- Leading members of governmental and regional authorities
- Infrastructure managers, Consultants

ISHMII Task Force "SHM Standardization"

Chair team:

Chair: Zhishen S.Wu (Japan, China) Co-chairs, Y.Q. Ni (Hong Kong, China), J. Brownjohn(UK)

Key Members:

F. Ansari (USA), B. Glisic (USA), P. Furtner (Austria), W. Habel (Germany), Y. Lei (China), H.N. Li (China), H. Li (China), Y. Lu (UK), A. Mufti (Canada), J-T Kim (South Korea), J. Newhook (Canada), B. Shi (China), H. Wenzel (Austria), Douglas Thomson (Canada), J. Zhang (China), Y.F.Zhang (China)

Co-operating countries and regions:

Austria ,Canada, China(Mainland, Hong Kong) , Germany , Japan, South Korea, USA

ISHMII Task Force "SHM Standardization"

Goals and tasks:

- Develop international model codes (ISHMII code series) for SHM of infrastructure;
- Establish the architecture of intelligent infrastructure;
- ➤ Maintain the state-of-the-art and the state-of-practice knowledge database on SHM and intelligent infrastructure;
- Promote the exchange of information and harmonization on SHM documentations, specifications, and guidelines from different counties and regions.

Deliverables:

- Survey and State-of-the-art report on SHM standardization activities from different counties and regions by Sommer 2015;
- ➤ ISHMII code series (ISHMII SHM code: is being completed) including concept and framework of intelligent infrastructure

ISHMII Task Force "SHM Standardization"

www.ishmii.org

Structure of ISHMII series codes on SHM of Civil Infrastructures as international model codes

Level 1 - ISHMII Code: General Principles, Definitions and Approaches

The guide should be sufficiently broad and also accessible (i.e. intelligible) to a range of stakeholders in SHM, from the structure operator to the academic expert.

Level 2 - ISHMII Code: For Different Major Structures or Major Sensing Technologies

Under consideration:

- Guideline for the Design of SHM for Bridge Structures
- Guideline for the Design of SHM for Geotechnical Engineering
- Guideline of Fibre-Optic Sensors based SHM for Civil Infrastructures

Level 3 - ISHMII Code: Recommended SHM guidelines (or standards) of different countries or regions

ISHMII Task Force "SHM Standardization"

Level 1-ISHMII Code: General Principles, Definitions and Approaches

1. Introduction

- 1.1 Scope of the standardization
- 1.2 Basic concepts
- 1.3 Category of structures/structure crowds(network): <u>Structure category, Monitoring type, Demands, Monitoring period, Signal transmission and Acquisition type</u>
- 1.4 Objectives of SHM
- 1.5 Relations among routine inspection, NDE inspection and SHM

2. Definitions for Damage, Performance, Health, and SHM

- 2.1 Structural Damages
- 2.2 Structural Performances
- 2.3 Structural Health
- 2.4 SHM

3. Composition of SHM and Monitoring Strategies

- 3.1 Composition of SHM: SHM functions and SHM systems
- 3.2 Monitoring Strategies

4. Sensors/sensing System

- 4.1. Sensors: Strain, Displacement, Acceleration, Pressure, Velocity, Corrosion, Temperature, Wind, etc.)
- 4.2 Implementation Methods: <u>Monitoring system design, Sensor installation, Signal transmission, Data collection</u>
- 4.3 Performance Requirement and Evaluations: <u>Sensor performance, Environmental conditions, and Economic considerations</u>

ISHMII Task Force "SHM Standardization"

Level 1-ISHMII Code: General Principles, Definitions and Approaches

5. Data Acquisition and Management Systems

- 5.1 Data Acquisition System: <u>Components of data acquisition systems, Types of data acquisition systems, Data Acquisition Modes</u>
- 5.2. Data Management System: <u>Functions of data management system, Components of data management system, Key Operation Items in DMS</u>

6. Networking, Communication, and Control

- 6.1 Networking
- 6.2 Data Communication: <u>Communication Protocols, Modes of Communication</u>
- 6.3 Data Processing and Control system

7. Measurement Calibration and Data Interpretation

- 7.1 Types and Sources of System Errors: <u>Systematic or Bias Errors, Random Errors</u>
- 7.2 Calibration of analysis errors

8. Structural Diagnosis and Prognosis

- 8.1 Algorithms of structural condition parameters and damages: <u>Deformation, Stiffness, Dynamic responses, Finite element modeling modification, Damages, Support degradation, etc.</u>
- 8.2 Assessment on Environmental Conditions and Loads
- 8.3 Performance Evaluations: <u>Performance Limits for Evaluation (bridge, tunnels)</u>, <u>Applications of structural health</u> evaluation
- 8.4 Evaluations of Residual Life
- 9. Examples (10 examples including: Bridge health monitoring system of Tsing Ma Bridge, Distributed Long-gauge Sensing of Sutong Yangtze River Highway Bridge)
- 10. Appendix: Commercially Available Sensor Technologies

Integrated assessment and management system (IMS)

Integrated

- Interaction of all structure components during their life cycle
- Critical lifecycle costbenefit analysis
- Combining the vertical elements of the IMS with the risk management elements

Presumption:

- Harmonization of existing approaches
- Risk Management across all managment system elements including emergency, crisis and continuity management

Graphics: Prof. Wenzel VCE

- Development of international model codes for SHM of infrastructure

Asset management

ISO 55000:2014

Asset management - Overview, principles and terminology

ISO 55000:2014 provides an overview of asset management, its principles and terminology, and the expected benefits from adopting asset management.

ISO 55000:2014 can be applied to all types of assets and use by all types and sizes of organizations.

Quality management

ISO 9001:2014/2015

Quality management systems - Requirements

Revised ISO 9001 considers a proposal for a new Eurocode (EN) on Risk-based inspection (RBI)

RBI can be seen as a link between a standardized framework, i.e. ISO 55000 and ISO 31000, an the practical application to various industries and sectors.

Positive effects when applying ISO 31000 and ISO 55000

- increases the likelihood of achieving objectives of the specific industry or user
- proactive management will be beneficial to the balance sheets,
- ISO 31000 improves the identification of opportunities and threats, the need to identify and treat risk throughout the organisation (integrated management concept) can be recognized
- establishes reliable basis for decision making and planning
- helps to allocate and use resources for risk treatment (mitigation)
- improves controls (operational effectiveness and efficiency)
- enhances health and safety performance as well as environmental protection
- supports financial reporting, governance, stakeholder confidence, and trust in the objectives will be improved
- minimises losses, improves loss prevention and incident management

Latin American SHM community is invited to cooperate with ISHMII and promote SHM to make structures intrinsically intelligent

WWW.ISHMII.ORG

INTERNATIONAL SOCIETY FOR STRUCTURAL HEALTH MONITORING OF INTELLIGENT INFRASTRUCTURE